
Contents lists available at SciVerse ScienceDirect







journal homepage: www.elsevier.com/locate/fluor

# Synthesis and structure of fluorophenyl derivatives of the 10-vertex monocarbaborane anions $[1-CB_9H_{10}]^-$ and $[2-CB_9H_{10}]^-$

Vikentii I. Bragin<sup>1</sup>, Alexander A. Korlyukov, Pavel V. Petrovskii, Igor B. Sivaev<sup>\*</sup>, Vladimir I. Bregadze

A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Str., 119991 Moscow, Russia

#### ARTICLE INFO

### ABSTRACT

Article history: Received 27 December 2011 Received in revised form 18 May 2012 Accepted 2 June 2012 Available online 26 June 2012

*Keywords:* Fluorophenyl carba-*closo*-decaborates Synthesis X-ray structure Reactions of decaborane  $nido-B_{10}H_{14}$  with a series of fluorobenzaldehydes in alkaline solution followed by treatment with iodine give the  $closo-[2-(X-FC_6H_4)-2-CB_9H_9]^-$  anions (X = 2, 3, 4). Upon heating, these compounds rearrange to more thermodynamically stable  $closo-[1-(X-FC_6H_4)-1-CB_9H_9]^-$  anions (X = 2, 3, 4). The compounds synthesized were characterized by multinuclear NMR spectroscopy. The crystal structures of  $(Bu_4N)[1-(2-FC_6H_4)-1-CB_9H_9]$  and  $(Bu_4N)_2[2-(4-FC_6H_4)-2-CB_9H_9][1-(4-FC_6H_4)-1-CB_9H_9]$  were determined by single crystal X-ray diffraction.

© 2012 Elsevier B.V. All rights reserved.

### 1. Introduction

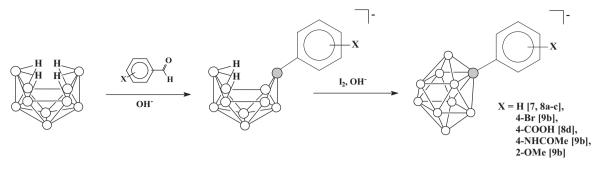
anions  $[1-R-1-CB_{11}H_{11-n}X_n]^$ and [1-R-1-Carborane  $(\text{CB}_9\text{H}_{9-n}X_n]^-$  (X = F, Cl, Br, I) have recently received much attention as a new class of robust and weakly coordinating anions [1-3]. The research interest was focused mainly on 12-vertex carboranes whereas their 10-vertex analogues received some less attention [4-7]. Described recently direct synthesis of C-aryl derivatives of 1carba-closo-decaborate from decaborane B10H14 and aryl aldehydes [8–10] gives possibility to increase total size of carborane anion due to introduction of aryl group. It is known that phenyl groups in the tetraphenylborate anion [BPh<sub>4</sub>]<sup>-</sup> are able to coordinate to metal ions and to react with electrophilic species [1,11]. The coordinating ability and reactivity of tetraphenylborate could be effectively suppressed by incorporation of electron-withdrawing substituents, such as fluorine atoms or trifluoromethyl groups [1,12]. There are only few examples of coordination of aryl groups in  $[B(C_6F_5)_4]^-$  [13] and  $[B(C_6H_3-3,5-(CF_3)_2)_4]^-$  [14] to transition metals. We suppose that combined fluorination of the phenyl ring and the carborane cage could result in new family of bulky weakly coordinating anions. Fluorination of 1-carba-closo-decaborate anion [1-CB<sub>9</sub>H<sub>10</sub>]<sup>-</sup> was described earlier [15]. In this study we report synthesis of a series of the fluorophenyl monocarbaborane anions [1-(X-FC<sub>6</sub>H<sub>4</sub>)-1-CB<sub>9</sub>H<sub>9</sub>]<sup>-</sup>

and  $[2-(X-FC_6H_4)-2-CB_9H_9]^-(X = 2, 3, 4)$  via reaction of decaborane with fluorine-containing aldehydes.

#### 2. Results and discussion

The reaction of decaborane  $nido-B_{10}H_{14}$  with benzaldehyde PhCHO in alkaline aqueous solution is known to produce the nido-[6-Ph-6-CB<sub>9</sub>H<sub>11</sub>]<sup>-</sup> anion which undergoes oxidative closure to the closo-[2-Ph-6-CB<sub>9</sub>H<sub>9</sub>]<sup>-</sup> anion, and then undergoes rearrangement to more thermodynamically favorable closo-[1-Ph-1-CB<sub>9</sub>H<sub>9</sub>]<sup>-</sup> anion [8,9a-c]. This procedure is especially attractive for synthesis of various functional derivatives of the monocarbaborane anions  $[1-CB_9H_{10}]^-$  and  $[2-CB_9H_{10}]^-$  because of the commercial availability of substituted aromatic aldehydes (Scheme 1).

We decided to use the same approach to prepare fluoro derivatives of the 1-carba-*closo*-decaborate anion. At the first step we tried reaction of decaborane with C<sub>6</sub>F<sub>5</sub>CHO in alkaline aqueous ethanol. Unfortunately, no formation of carborane species was observed, that could be explained by formation of stable pentafluorobenzaldehyde hemiacetal [16]. Similarly, no carborane formation was found in the case of reaction with trifluor-oacetaldehyde monohydrate. Nevertheless we have found that the reactions of decaborane with a series of isomeric fluorobenzaldehydes 2-, 3- and 4-FC<sub>6</sub>H<sub>4</sub>CHO in alkaline solution followed by the treatment with elemental iodine give the corresponding closo-[2-FC<sub>6</sub>H<sub>4</sub>-2-CB<sub>9</sub>H<sub>9</sub>]<sup>-</sup> anions isolated as their tetrabutylammonium salts (Scheme 2).


Dissolution of the 2-isomers in ethanol followed by heating at reflux for 20 h, results in the thermodynamically more stable *closo*- $[1-FC_6H_4-1-CB_9H_9]^-$  anions (Scheme 3). Their tetrabutylammonium

<sup>\*</sup> Corresponding author. Tel.: +7 499 1359242; fax: +7 499 1355085.

E-mail address: sivaev@ineos.ac.ru (I.B. Sivaev).

<sup>&</sup>lt;sup>1</sup> Permanent address: State Research Center Institute of Chemistry and Technology of Organoelement Compounds, 38 Enthusiasts Av., 111123 Moscow, Russia.

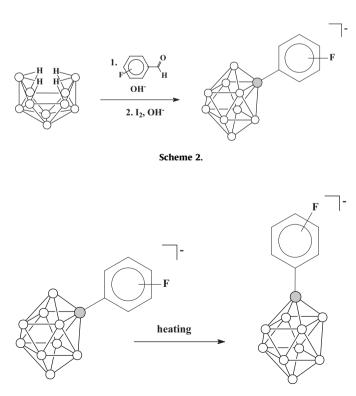
<sup>0022-1139/\$ -</sup> see front matter © 2012 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.jfluchem.2012.06.019



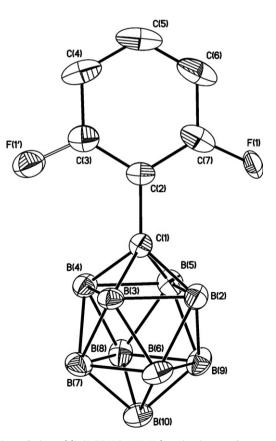


salts crystallize well from hot ethanol giving the crystals suitable for single crystal X-ray diffraction study.

The crystals of  $(Bu_4N)[1-(2-FC_6H_4)-1-CB_9H_9]$  (1) and  $(Bu_4N)_2[2-FC_6H_4)-1-CB_9H_9]$  $(4-FC_6H_4)-2-CB_9H_9$  [1-(4-FC\_6H\_4)-1-CB\_9H\_9] (2) were obtained upon cooling of the solutions of the corresponding 2-isomers after refluxing for 20 and 10 h, respectively. The crystal structures of 1 and 2 were studied by single crystal X-ray diffraction (Figs. 1-3). It is noteworthy that 2 is double salt which contains both [1-(4- $FC_6H_4$ )-1-CB<sub>9</sub>H<sub>9</sub>]<sup>-</sup> and [2-(4-FC<sub>6</sub>H<sub>4</sub>)-2-CB<sub>9</sub>H<sub>9</sub>]<sup>-</sup> anions in 1: 1 ratio. The C–B bonds in the  $[1-FC_6H_4-1-CB_9H_9]^-$  anions in the structures of 1 and 2 are somewhat elongated (by 0.02–0.03 Å) in comparison with those in the parent anion  $[1-CB_9H_{10}]^-$  [17]. The C(1)–C(aryl) bonds fall into range for phenyl-substituted derivatives of the 1carba-closo-decaborate anion described in the literature (1.479-1.503 Å) [6.9.10.18] and are some shorter than in icosahedral analogue  $[1-(4-FC_6H_4)-1-CB_{11}H_{11}]^-$  (1.507 Å) [19]. The C–B bonds in the  $[2-(4-FC_6H_4)-2-CB_9H_9]^-$  anion in the structure of **2** are close to those found in other phenyl-substituted derivatives of the 2carba-closo-decaborate anion [9], except the C(2)-B(1) bond which is some shorter (1.626 Å in comparison with 1.636–1.637 Å).


The fluorophenyl carboranes prepared was found to be stable towards nucleophilic aromatic substitution of fluorine under treatment with phenoxides (phenol, 4-aminophenol) and amines (morpholine, piperidine).

#### 3. Experimental


Reagents and solvents were obtained commercially and used as supplied. <sup>1</sup>H, <sup>11</sup>B, and <sup>19</sup>F NMR spectra were collected using Bruker Avance 300, Bruker Avance 400 and Bruker Avance 600 spectrometers.

### 3.1. General procedure for synthesis of $(Bu_4N)[2-(FC_6H_4)-2-CB_9H_9]$

Decaborane(14) (2.40 g, 20 mmol) was added at 0 °C to 2 M aqueous solution of sodium hydroxide (100 cm<sup>3</sup>). After stirring for 20 min, ethanol (70 cm<sup>3</sup>) followed by fluorobenzaldehyde (11.17 g, 90 mmol) were added and the reaction mixture was stirred for 4 h. The ethanol was removed under reduced pressure and the residue



Scheme 3.



**Fig. 1.** General view of  $[1-(2-FC_6H_4)-1-CB_9H_9]^-$  anion in crystal structure of **1** presented by thermal ellipsoids at 50% probability. Atom F(1) disordered over two positions.

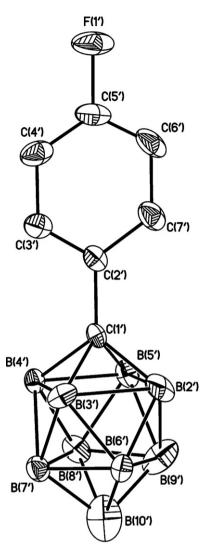
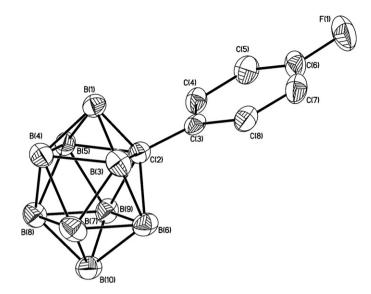




Fig. 2. General view of  $[1-(4-FC_6H_4)-1-CB_9H_9]^-$  anion in crystal structure of  ${\bf 2}$  presented by thermal ellipsoids at 50% probability.

was extracted with diethyl ether  $(3 \times 50 \text{ cm}^3)$ . The diethyl ether was pumped off, the residue was dissolved in 2 M aqueous solution of sodium hydroxide  $(120 \text{ cm}^3)$ , treated dropwise with a solution of iodine (20.30 g, 80 mmol) in ethanol  $(600 \text{ cm}^3)$  and stirred for additional 1 h. The solution was neutralized by addition of 1 M aqueous hydrochloric acid. The reaction mixture was evaporated to dryness, the residue was dissolved in water  $(60 \text{ cm}^3)$  and treated with solution of  $[Bu_4N]Br$  (12.80 g, 40 mmol) in water (30 cm<sup>3</sup>). The precipitate formed was filtered, washed with diethyl ether, dried *in vacuo*, and recrystallized from aqueous ethanol to obtain white crystalline solid.

#### 3.1.1. Tetrabutylammonium 2-(2-fluorophenyl)-2-carba-closo $decaborate (<math>Bu_4N$ )[ $2-(2-FC_6H_4)-2-CB_9H_9$ ]

Yield 75% (6.84 g). <sup>1</sup>H NMR (400.1 MHz, DMSO- $d_6$ ): 6.99 (1H, m, o-FC<sub>6</sub>H<sub>4</sub>), 6.86 (2H, m, o-FC<sub>6</sub>H<sub>4</sub>), 6.74 (1H, m, o-FC<sub>6</sub>H<sub>4</sub>), 3.16 (8H, m, Bu<sub>4</sub>N<sup>+</sup>), 1.56 (8H, m, Bu<sub>4</sub>N<sup>+</sup>), 1.30 (8H, m, Bu<sub>4</sub>N<sup>+</sup>), 0.93 (12H, t, Bu<sub>4</sub>N<sup>+</sup>). <sup>13</sup>C NMR (150.9 MHz, acetone- $d_6$ ): 160.5 (d,  $J_{C,F}$  = 248 Hz, CF), 132.0 (d,  $J_{C,F}$  = 13 Hz, CH), 130.6 (d,  $J_{C,F}$  = 18 Hz, CH), 126.4 (d,  $J_{C,F}$  = 8 Hz, CH), 123.3, 115.5, 59.3 (C<sub>carb</sub>), 45.4 (Bu<sub>4</sub>N<sup>+</sup>), 24.4 (Bu<sub>4</sub>N<sup>+</sup>), 20.3 (Bu<sub>4</sub>N<sup>+</sup>), 13.9 (Bu<sub>4</sub>N<sup>+</sup>). <sup>11</sup>B NMR (128.4 MHz, DMSO- $d_6$ ): 2.0 (1B, d,  $J_{B,H}$  = 154 Hz), -3.1 (1B, d,  $J_{B,H}$  = 168 Hz), -20.9 (1B, d,  $J_{B,H}$  = 138 Hz), -25.3 (2B, d,  $J_{B,H}$  = -147 Hz), -28.5 (4B, d,  $J_{B,H}$  = 135 Hz). <sup>19</sup>F NMR (282.4 MHz, DMSO- $d_6$ ): -115.2.



**Fig. 3.** General view of  $[2-(4-FC_6H_4)-2-CB_9H_9]^-$  anion in crystal structure of **2** presented by thermal ellipsoids at 50% probability.

# 3.1.2. Tetrabutylammonium $2-(3-fluorophenyl)-2-carba-closo-decaborate (Bu_4N)[2-(3-FC_6H_4)-2-CB_9H_9]$

Yield 72% (6.58 g). <sup>1</sup>H NMR (400.1 MHz, DMSO- $d_6$ ): 7.06 (1H, m, *m*-FC<sub>6</sub>H<sub>4</sub>), 6.78 (1H, m, *m*-FC<sub>6</sub>H<sub>4</sub>), 6.59 (1H, m, *m*-FC<sub>6</sub>H<sub>4</sub>), 6.45 (1H, m, *m*-FC<sub>6</sub>H<sub>4</sub>), 3.18 (8H, m, Bu<sub>4</sub>N<sup>+</sup>), 1.57 (8H, m, Bu<sub>4</sub>N<sup>+</sup>), 1.31 (8H, m, Bu<sub>4</sub>N<sup>+</sup>), 0.93 (12H, t, Bu<sub>4</sub>N<sup>+</sup>). <sup>11</sup>B NMR (128.4 MHz, DMSO- $d_6$ ): 1.9 (1B, d,  $J_{B,H}$  = 156 Hz), -2.8 (1B, d,  $J_{B,H}$  = 170 Hz), -21.0 (1B, d,  $J_{B,H}$  = 142 Hz), -25.5 (4B, d,  $J_{B,H}$  = 152 Hz), -28.4 (4B, d,  $J_{B,H}$  = 133 Hz). <sup>19</sup>F NMR (282.4 MHz, DMSO- $d_6$ ): -115.1.

# 3.1.3. Tetrabutylammonium 2-(4-fluorophenyl)-2-carba-closo-decaborate $(Bu_4N)[2-(4-FC_6H_4)-2-CB_9H_9]$

Yield 74% (6.86 g). <sup>1</sup>H NMR (400.1 MHz, DMSO- $d_6$ ): 6.86 (2H, m, p-FC<sub>6</sub>H<sub>4</sub>), 6.78 (2H, m, p-FC<sub>6</sub>H<sub>4</sub>), 3.17 (8H, m, Bu<sub>4</sub>N<sup>+</sup>), 1.57 (8H, m, Bu<sub>4</sub>N<sup>+</sup>), 1.30 (8H, m, Bu<sub>4</sub>N<sup>+</sup>), 0.94 (12H, t, Bu<sub>4</sub>N<sup>+</sup>). <sup>11</sup>B NMR (128.4 MHz, DMSO- $d_6$ ): 1.7 (1B, d,  $J_{B,H}$  = 154 Hz), -2.8 (1B, d,  $J_{B,H}$  = 166 Hz), -21.1 (1B, d,  $J_{B,H}$  = 135 Hz), -25.6 (2B, d,  $J_{B,H}$  = 145 Hz), -28.3 (4B, d,  $J_{B,H}$  = 131 Hz). <sup>19</sup>F NMR (282.4 MHz, DMSO- $d_6$ ): -119.0.

### 3.2. General procedure for synthesis of $(Bu_4N)[1-(FC_6H_4)-1-CB_9H_9]$

Solution of  $(Bu_4N)[2-(FC_6H_4)-2-CB_9H_9]$  (4.57 g, 10 mmol) in ethanol (150 cm<sup>3</sup>) was heated under reflux for 20 h. The solution was allowed to cool to ambient temperature and the ethanol was removed *in vacuo* to obtain white crystalline solid.

#### 3.2.1. Tetrabutylammonium 1-(2-fluorophenyl)-1-carba-closodecaborate $(Bu_4N)[1-(2-FC_6H_4)-1-CB_9H_9]$

Yield 98% (4.48 g). <sup>1</sup>H NMR (400.1 MHz, DMSO- $d_6$ ): 7.82 (1H, m, o-FC<sub>6</sub>H<sub>4</sub>), 7.32 (1H, m, o-FC<sub>6</sub>H<sub>4</sub>), 7.23 (2H, m, o-FC<sub>6</sub>H<sub>4</sub>), 3.15 (8H, m, Bu<sub>4</sub>N<sup>+</sup>), 1.56 (8H, m, Bu<sub>4</sub>N<sup>+</sup>), 1.30 (8H, m, Bu<sub>4</sub>N<sup>+</sup>), 0.93 (12H, t, Bu<sub>4</sub>N<sup>+</sup>). <sup>13</sup>C NMR (75.5 MHz, acetone- $d_6$ , Me<sub>4</sub>Si): 163.3 (d,  $J_{C,F}$  = 249 Hz, CF), 135.0, 132.1 (d,  $J_{C,F}$  = 13 Hz, CH), 127.8 (d,  $J_{C,F}$  = 8 Hz, CH), 124.1, 115.9 (d,  $J_{C,F}$  = 23 Hz, CH), 59.3 ( $C_{carb}$ ), 47.0 (Bu<sub>4</sub>N<sup>+</sup>), 24.3 (Bu<sub>4</sub>N<sup>+</sup>), 20.3 (Bu<sub>4</sub>N<sup>+</sup>), 13.8 (Bu<sub>4</sub>N<sup>+</sup>). <sup>11</sup>B NMR (128.4 MHz, DMSO- $d_6$ , BF<sub>3</sub>·Et<sub>2</sub>O): 30.6 (1B, d,  $J_{B,H}$  = 152 Hz), -15.5 (4B, d,  $J_{B,H}$  = 149 Hz), -23.9 (4B, d,  $J_{B,H}$  = 138 Hz). <sup>19</sup>F NMR (282.4 MHz, DMSO- $d_6$ ): -115.5. Anal. Calcd. for C<sub>23</sub>H<sub>49</sub>B<sub>9</sub>FN: C, 60.59; H, 10.83; B, 21.34; N, 3.07. Found: C, 60.35; H, 10.78; B, 21.27; N, 3.00.

#### Table 1

Details of data collection and structure refinements for  $(Bu_4N)[1-(2-FC_6H_4)-1-CB_9H_9]$  (1) and  $(Bu_4N)_2[2-(4-FC_6H_4)-2-CB_9H_9][1-(4-FC_6H_4)-1-CB_9H_9]$  (2).

|                                                              | 1                                                 | 2                                                 |
|--------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------|
| Molecular formula                                            | C <sub>23</sub> H <sub>48</sub> B <sub>9</sub> FN | C <sub>23</sub> H <sub>49</sub> B <sub>9</sub> FN |
| Formula weight                                               | 455.92                                            | 455.92                                            |
| Dimension, mm                                                | $0.04 \times 0.13 \times 0.29$                    | $0.08 \times 0.08 \times 0.08$                    |
| Crystal system                                               | Monoclinic                                        | Triclinic                                         |
| Space group                                                  | $P2_1/n$ (No. 14)                                 | <i>P</i> -1 (No. 2)                               |
| a, Å                                                         | 11.343(4)                                         | 10.7138(9)                                        |
| b, Å                                                         | 14.413(6)                                         | 15.5663(13)                                       |
| <i>c</i> , Å                                                 | 17.666(7)                                         | 17.8156(14)                                       |
| lpha,°                                                       |                                                   | 100.453(2)                                        |
| β,°                                                          | 93.889(15)                                        | 94.702(2)                                         |
| $\gamma$ ,°                                                  |                                                   | 90.444(2)                                         |
| V, Å <sup>3</sup>                                            | 2881.7(19)                                        | 2911.3(4)                                         |
| Ζ                                                            | 4                                                 | 4                                                 |
| $ ho_{\rm calc}$ , g cm <sup>-3</sup>                        | 1.051                                             | 1.040                                             |
| Temperature, K                                               | 100                                               | 100                                               |
| Max. $\Theta$ ,°                                             | 26.00                                             | 27.10                                             |
| Scan type                                                    | $\omega   \varphi$                                | $\omega   \varphi$                                |
| Radiation, λ(Mo-Kα), Å                                       | 0.71073                                           | 0.71073                                           |
| Linear absorption ( $\mu$ ), cm $^{-1}$                      | 0.59                                              | 0.58                                              |
| $T_{\min}/T_{\max}$                                          | 0.98/1.00                                         | 0.995/0.982                                       |
| F(000)                                                       | 992                                               | 1488                                              |
| Number of total reflections                                  | 27,585                                            | 31,051                                            |
| Number of independent reflections                            | 5634                                              | 12839                                             |
| Number of independent reflections<br>with $I > 2(\sigma(I))$ | 2742                                              | 5940                                              |
| Parameters                                                   | 356                                               | 421                                               |
| wR <sub>2</sub>                                              | 0.1518                                            | 0.0804                                            |
| $R_1$ [for reflections with                                  |                                                   |                                                   |
| $I > 2\sigma(I)$                                             | 0.0683                                            | 0.0532                                            |
| GOF                                                          | 0.997                                             | 0.987                                             |
| $ ho_{ m max}/ ho_{ m min}$ , eÅ $^{-3}$                     | 0.58/-0.021                                       | 1.02 / -0.488                                     |

#### 3.2.2. Tetrabutylammonium 1-(3-fluorophenyl)-1-carba-closo $decaborate (<math>Bu_4N$ )[ $1-(3-FC_6H_4)-1-CB_9H_9$ ]

Yield 98% (4.48 g). <sup>1</sup>H NMR (400.1 MHz, DMSO- $d_6$ ): 7.72 (1H, m, *m*-FC<sub>6</sub>H<sub>4</sub>), 7.58 (1H, m, *m*-FC<sub>6</sub>H<sub>4</sub>), 7.33 (1H, m, *m*-FC<sub>6</sub>H<sub>4</sub>), 6.97 (1H, m, *m*-FC<sub>6</sub>H<sub>4</sub>), 3.31 (8H, m, Bu<sub>4</sub>N<sup>+</sup>), 1.72 (8H, m, Bu<sub>4</sub>N<sup>+</sup>), 1.47 (8H, m, Bu<sub>4</sub>N<sup>+</sup>), 1.05 (12H, t, Bu<sub>4</sub>N<sup>+</sup>). <sup>11</sup>B NMR (128.4 MHz, DMSO- $d_6$ ): 30.1 (1B, d,  $J_{B,H}$  = 149 Hz), -15.5 (4B, d,  $J_{B,H}$  = 147 Hz), -23.7 (4B, d,  $J_{B,H}$  = 138 Hz). <sup>19</sup>F NMR (282.4 MHz, DMSO- $d_6$ ): -114.9. Anal. Calcd. for C<sub>23</sub>H<sub>49</sub>B<sub>9</sub>FN: 60.59; H, 10.83; B, 21.34; N, 3.07. Found: C, 60.41; H, 10.69; B, 21.38; N, 2.98.

## 3.2.3. Tetrabutylammonium 1-(4-fluorophenyl)-1-carba-closo-decaborate (Bu<sub>4</sub>N)[1-(4-FC<sub>6</sub>H<sub>4</sub>)-1-CB<sub>9</sub>H<sub>9</sub>]

Yield 97% (4.44 g). <sup>1</sup>H NMR (400.1 MHz, DMSO- $d_6$ ): 7.79 (2H, m, p-FC<sub>6</sub>H<sub>4</sub>), 7.17 (2H, t, p-FC<sub>6</sub>H<sub>4</sub>), 3.16 (8H, m, Bu<sub>4</sub>N<sup>+</sup>), 1.56 (8H, m, Bu<sub>4</sub>N<sup>+</sup>), 1.31 (8H, m, Bu<sub>4</sub>N<sup>+</sup>), 0.93 (12H, t, Bu<sub>4</sub>N<sup>+</sup>). 11B NMR

Table 2

| Selected bond distances | (A) and | l angles (°) for | $[1-(2-FC_6H_4)]$ | $-1-CB_9H_9]^-$ anion. |
|-------------------------|---------|------------------|-------------------|------------------------|
|-------------------------|---------|------------------|-------------------|------------------------|

|                |          | / ( 04/        | 5 51     |
|----------------|----------|----------------|----------|
| C(1)-C(2)      | 1.491(4) | B(4) - B(7)    | 1.796(5) |
| C(1)-B(2)      | 1.620(4) | B(4) - B(8)    | 1.798(5) |
| C(1) - B(3)    | 1.604(4) | B(5) - B(8)    | 1.807(5) |
| C(1)-B(4)      | 1.603(4) | B(5)-B(9)      | 1.798(5) |
| C(1)-B(5)      | 1.610(4) | B(6) - B(7)    | 1.835(5) |
| B(2) - B(3)    | 1.838(5) | B(6) - B(9)    | 1.835(5) |
| B(2) - B(5)    | 1.827(5) | B(6) - B(10)   | 1.694(5) |
| B(2)-B(6)      | 1.800(5) | B(7) - B(8)    | 1.838(5) |
| B(2) - B(9)    | 1.808(5) | B(7) - B(10)   | 1.696(5) |
| B(3) - B(4)    | 1.841(5) | B(8) - B(9)    | 1.828(5) |
| B(3) - B(6)    | 1.810(5) | B(8) - B(10)   | 1.690(5) |
| B(3) - B(7)    | 1.802(5) | B(9)-B(10)     | 1.687(5) |
| B(4)-B(5)      | 1.831(5) |                |          |
| C(2)-C(1)-B(4) | 125.5(2) | C(2)-C(1)-B(3) | 126.0(2) |
| B(4)-C(1)-B(3) | 70.0(2)  | C(2)-C(1)-B(5) | 126.5(2) |
| B(4)-C(1)-B(5) | 69.4(2)  | B(3)-C(1)-B(5) | 107.6(2) |
| C(2)-C(1)-B(2) | 127.3(2) |                |          |
|                |          |                |          |

#### Table 3

Selected bond distances (Å) and angles (°) for [1-(4-FC<sub>6</sub>H<sub>4</sub>)-1-CB<sub>9</sub>H<sub>9</sub>]<sup>-</sup> anion.

| C(1')-C(2')        | 1.477(3)   | B(4')-B(7')       | 1.798(4)   |
|--------------------|------------|-------------------|------------|
| C(1')-B(2')        | 1.595(3)   | B(4')-B(8')       | 1.764(4)   |
| C(1')-B(3')        | 1.615(3)   | B(5')-B(8')       | 1.753(4)   |
| C(1')-B(4')        | 1.645(3)   | B(5')-B(9')       | 1.771(4)   |
| C(1')-B(5')        | 1.636(3)   | B(6')-B(7')       | 1.827(4)   |
| B(2')-B(3')        | 1.936(4)   | B(6')-B(9')       | 1.812(4)   |
| B(2')-B(5')        | 1.840(4)   | B(6')-B(10')      | 1.751(4)   |
| B(2')-B(6')        | 1.742(4)   | B(7')-B(8')       | 1.796(4)   |
| B(2')-B(9')        | 1.764(4)   | B(7')-B(10')      | 1.645(5)   |
| B(3')-B(4')        | 1.828(4)   | B(8')-B(9')       | 1.814(4)   |
| B(3')-B(6')        | 1.776(4)   | B(8')-B(10')      | 1.774(5)   |
| B(3')-B(7')        | 1.784(3)   | B(9')-B(10')      | 1.582(5)   |
| B(4')-B(5')        | 1.848(3)   |                   |            |
| C(2) $C(1)$ $D(2)$ | 126.07(10) | D(2/) C(1/) D(5/) | 100 24(10) |
| C(2')-C(1')-B(2')  | 126.07(19) | B(3')-C(1')-B(5') | 108.34(18) |
| C(2')-C(1')-B(3')  | 127.13(18) | C(2')-C(1')-B(4') | 125.20(18) |
| B(2')-C(1')-B(3')  | 74.20(16)  | B(2')-C(1')-B(4') | 108.56(19) |
| C(2')-C(1')-B(5')  | 124.33(18) | B(3')-C(1')-B(4') | 68.19(15)  |
| B(2')-C(1')-B(5')  | 69.40(17)  | B(5')-C(1')-B(4') | 68.42(14)  |

(128.4 MHz, DMSO- $d_6$ ): 29.4 (1B, d,  $J_{B,H}$  = 152 Hz), -15.6 (4B, d,  $J_{B,H}$  = 147 Hz), -23.8 (4B, d,  $J_{B,H}$  = 138 Hz). <sup>19</sup>F NMR (282.4 MHz, DMSO- $d_6$ ): -117.5. Anal. Calcd. for C<sub>23</sub>H<sub>49</sub>B<sub>9</sub>FN: C, 60.59; H, 10.83; B, 21.34; N, 3.07. Found: C, 60.45; H, 10.67; B, 21.32; N, 2.99.

#### 3.3. X-ray crystallography

X-ray diffraction measurements of **1** and **2** were carried out with a SMART APEX II diffractometer. The frames were integrated and corrected for absorption by APEX2 program suite [20]. The details of crystallographic data and experimental conditions are presented in Table 1. Important structural parameters of structures are shown in captions of Figs. 1–3. The crystals of **1** and **2** were characterized by poor diffraction quality probably due to presence of flexible  $Bu_4N^+$  cations and high intensity of thermal motion of carborane cages.

The structures were solved by the direct method and refined by full-matrix least-squares technique against  $F^2$  in the anisotropicisotropic approximation. The hydrogen atoms were located from difference electron density syntheses and refined in rigid body model. All calculations were performed using the SHELXTL PLUS 5.10 program package [21]. Fluorine atom in structure **1** is disordered over two positions which are overlapped with position of hydrogen atoms. The correct refinement of coordinates of H and F atoms is impossible. So the C(7)–F(1) and C(3)–F(1') bonds are shortened in comparison with those standard value. Details concerning the crystal data collection and refinement parameters

| Table 4                    |                    |                                  |       |
|----------------------------|--------------------|----------------------------------|-------|
| Selected bond distances (Å | and angles (°) for | $[2-(4-FC_6H_4)-2-CB_0H_0]^{-1}$ | anior |

| C(2)-C(3)                        | 1.502(3)   | B(4) - B(7)    | 1.825(3) |
|----------------------------------|------------|----------------|----------|
| C(2)-B(1)                        | 1.626(3)   | B(4) - B(8)    | 1.820(3) |
| C(2) - B(3)                      | 1.763(3)   | B(5)-B(8)      | 1.794(3) |
| C(2)-B(5)                        | 1.758(3)   | B(5)-B(9)      | 1.800(3) |
| C(2)-B(6)                        | 1.744(3)   | B(6) - B(7)    | 1.814(4) |
| C(2)-B(9)                        | 1.750(3)   | B(6) - B(9)    | 1.837(3) |
| B(1)-B(3)                        | 1.683(3)   | B(6)-B(10)     | 1.684(3) |
| B(1)-B(4)                        | 1.670(3)   | B(7) - B(8)    | 1.831(3) |
| B(1)-B(5)                        | 1.685(3)   | B(7)-B(10)     | 1.685(4) |
| B(3) - B(4)                      | 1.809(3)   | B(8) - B(9)    | 1.819(3) |
| B(3) - B(6)                      | 1.797(3)   | B(8) - B(10)   | 1.692(3) |
| B(3) - B(7)                      | 1.792(3)   | B(9)-B(10)     | 1.681(4) |
| B(4) - B(5)                      | 1.818(3)   |                |          |
| C(3)-C(2)-B(1)                   | 114.19(17) | C(3)-C(2)-B(5) | 127.8(2) |
| C(3)-C(2)-B(1)<br>C(3)-C(2)-B(6) | 117.82(16) | B(1)-C(2)-B(5) | 59.6(1)  |
| B(1)-C(2)-B(6)                   | 117.44(16) | B(6)-C(2)-B(5) | 107.4(2) |
|                                  | • • •      |                | . ,      |
| C(3)-C(2)-B(9)                   | 117.2(2)   | B(9)-C(2)-B(5) | 61.8(1)  |
| B(1)-C(2)-B(9)                   | 117.6(2)   | C(3)-C(2)-B(3) | 128.9(2) |
| B(6)-C(2)-B(9)                   | 63.5(1)    |                |          |
|                                  |            |                |          |

are summarized in Table 1. Selected bond lengths are listed in Tables 2–4. The crystallographic data for **1** and **2** have been deposited to the Cambridge Crystallographic Data Centre (CCDC-662953 and CCDC-662954).

#### Acknowledgement

The authors are grateful to the Russian Foundation for Basic Research (05-03-32429) for financial support.

#### Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.jfluchem.2012. 06.019.

#### References

- [1] S.H. Strauss, Chem. Rev. 93 (1993) 927-942.
- [2] C.A. Reed, Acc. Chem. Res. 31 (1998) 133-139.
- [3] I. Crossing, I. Raabe, Angew. Chem. Int. Ed. 43 (2004) 2066-2090.
- [4] Z. Xie, D.J. Liston, T. Jelinek, V. Mitro, R. Bau, C.A. Reed, J. Chem. Soc., Chem. Commun. (1993) 384–386;
- Z. Xie, T. Jelinek, R. Bau, C.A. Reed, J. Am. Chem. Soc. 116 (1994) 1907-1913.
- [5] C.W. Tsang, Q. Yang, E.T.-P. Sze, T.C.W. Mak, D.T.W. Chan, Z. Xie, Inorg. Chem. 39 (2000) 3582–3589.
- [6] S.L. Rénard, A. Franken, C.A. Kilner, J.D. Kennedy, M.A. Halcrow, New J. Chem. 26 (2002) 1634–1637;

A. Franken, N.J. Bullen, T. Jelinek, M. Thornton-Pett, S.J. Teat, W. Clegg, J.D. Kennedy, M.J. Hardie, New J. Chem. 28 (2004) 1499–1505;

R. Ahmad, M.J. Hardie, New J. Chem. 28 (2004) 1315-1319;

- C.J. Sumby, M.J. Carr, A. Franken, J.D. Kennedy, C.A. Kilner, M.J. Hardie, New J. Chem. 30 (2006) 1390–1396;
- L. Cunha-Silva, R. Ahmad, M.J. Carr, A. Franken, J.D. Kennedy, M.J. Hardie, Cryst. Growth Design 7 (2007) 658–667.
- [7] P. Farras, C. Viñas, R. Sillanpää, F. Teixidor, M. Rey, Dalton Trans. 39 (2010) 7684–7691.
- [8] B. Brellochs, in: M.G. Davidson, A.K. Huges, T.B. Marder, K. Wade (Eds.), Contemporary Boron Chemistry, Royal Society of Chemistry, Cambridge, UK, 2000, pp. 212–214.

[9] A. Franken, C.A. Kilner, M. Thornton-Pett, J.D. Kennedy, Inorg. Chem. Commun. 5 (2002) 581–584;

 A. Franken, C.A. Kilner, M. Thornton-Pett, J.D. Kennedy, Collect. Czech. Chem. Commun. 67 (2002) 869–912;
 A. Franken, T. Jelinek, R.G. Taylor, D.L. Ormsby, C.A. Kilner, W. Clegg, J.D. Kennedy,

Dalton Trans. (2006) 5753-5769;
 A. Franken, M.J. Carr, W. Clegg, C.A. Kilner, J.D. Kennedy, Dalton Trans. (2004)

3552–3561. [10] I.B. Sivaev, S. Sjöberg, V.I. Bregadze, in: Yu. Bubnov (Ed.), Boron Chemistry at the

For J. B. Stvaev, S. Sjoberg, V.I. Bregadze, III: Yu. Bubliov (Ed.), Boron Chemistry at the Beginning of the 21st Century, Editorial URSS, Moscow, Russia, 2003, pp. 334–337; LB Simery 74. Starilana, B.V. Patrenskii, VI. Parandra, S. Sikhara, I. Osnan anat.

I.B. Sivaev, Z.A. Starikova, P.V. Petrovskii, V.I. Bregadze, S. Sjöberg, J. Organomet. Chem. 690 (2005) 2790–2795.

[11] G.B. Deacon, D.J. Evans, C.M. Forsyth, P.C. Junk, Coord. Chem. Rev. 251 (2007) 1699–1706;

E.P. Yu. Shestakova, S. Varshavsky, V.N. Khrustalev, I.S. Podkorytov, J. Organomet. Chem. 692 (2007) 4297–4302;

S. Dehghanpour, A. Mahmoudi, R. Hadjikhani, J. Braz. Chem. Soc. 19 (2008) 600–603; C. Ricardo, L.M. Matosziuk, J.D. Evanseck, T. Pintauer, Inorg. Chem. 48 (2009) 16–18.

- [12] H. Kobayashi, J. Fluorine Chem. 105 (2000) 201–203.
   [13] X. Yang, C.L. Stern, T.J. Marks, Organometallics 10 (1991) 840–842;
- M. Mars, Organomicanos 10 (1997) 640-642, M.W. Bouwkamp, P.H.M. Budzelaar, J. Gercama, I. Del Hierro Morales, J. de Wolf, A. Meetsma, S.I. Troyanov, J.H. Teuben, B. Hessen, J. Am. Chem. Soc. 127 (2005) 14310–14319.
- [14] J. Powell, A. Lough, T. Saeed, J. Chem. Soc., Dalton Trans. (1997) 4137–4138;
   T.M. Douglas, E. Molinos, S.K. Brayshaw, A.S. Weller, Organometallics 26 (2007) 463–465.
- S.V. Ivanov, J.J. Rockwell, S.M. Miller, O.P. Anderson, K.A. Solntsev, S.H. Strauss, Inorg. Chem. 35 (1998) 7882–7891;
   S.V. Ivanov, A.J. Lupinetti, K.A. Solntsev, S.H. Strauss, J. Fluorine Chem. 89 (1998) 65–72;
   S.V. Ivanov, S.M. Ivanova, S.M. Miller, O.P. Anderson, K.A. Solntsev, S.H. Strauss,

5.V. Ivanov, S.M. Ivanova, S.M. Miner, O.P. Anderson, K.A. Sonitsev, S.H. Strauss, Inorg. Chim. Acta 289 (1999) 76–84.

- [16] T.N. Gerasimova, E.P. Fokin, Russ. Chem. Rev. 49 (1980) 558-569.
- [17] K. Nestor, B. Stibr, J.D. Kennedy, M. Thornton-Pett, T. Jelinek, Collect. Czech. Chem. Commun. 57 (1992) 1262–1268.
- [18] N.J. Bullen, A. Franken, C.A. Kilner, J.D. Kennedy, Chem. Commun. (2003) 1684– 1685;
  - A. Franken, C.A. Kilner, J.D. Kennedy, Inorg. Chem. Commun. 6 (2003) 1104–1108.
- [19] S. Körbe, D.B. Sowers, A. Franken, J. Michl, Inorg. Chem. 43 (2004) 8158-8161.
- [20] APEX2 software package, Bruker AXS Inc., Madison, Wisconsin, USA, 2005.
- [21] G.M. Sheldrick, SHELXTL, v. 5.10, Structure Determination Software Suite, Bruker AXS, Madison, Wisconsin, USA, 1998.